Transcendental Methods in the Study of Algebraic Cycles with a Special Emphasis on Calabi–Yau Varieties

نویسنده

  • James D. Lewis
چکیده

We review the transcendental aspects of algebraic cycles, and explain how this relates to Calabi–Yau varieties. More precisely, after presenting a general overview, we begin with some rudimentary aspects of Hodge theory and algebraic cycles. We then introduce Deligne cohomology, as well as the generalized higher cycles due to Bloch that are connected to higher K-theory, and associated regulators. Finally, we specialize to the Calabi–Yau situation, and explain some recent developments in the field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic and Geometry of Algebraic Varieties with Special Emphasis on Calabi–yau Varieties and Mirror Symmetry

Chen, Xi (University of Alberta) Xiao’s Conjecture on Canonically Fibered Surfaces Abstract: In 1988, Gang Xiao proposed a list of open problems on algebraic surfaces. Many of these remain open to this day. One of the problems concerns the maximal relative genus of a canonically fibered surface. In this talk, I will talk about my proof of this conjecture. Garcia, Natalia (Queen’s University) Cu...

متن کامل

Some Transcendental Methods in the Study of Algebraic Cycles

O. I n t r o d u c t i o n The algebraic cycles which lie in a smooth, projective algebraic variety, together with the various equivalence relations (such as numerical or algebraic equivalence) which may be defined on such cycles, constitute a purely algebro-geometric concept. One may, however, attempt to study these by transcendental methods, and historically much of the structure of algebraic...

متن کامل

Mirror Congruence For Rational Points On Calabi-Yau Varieties

One of the basic problems in arithmetic mirror symmetry is to compare the number of rational points on a mirror pair of Calabi-Yau varieties. At present, no general algebraic geometric definition is known for a mirror pair. But an important class of mirror pairs comes from certain quotient construction. In this paper, we study the congruence relation for the number of rational points on a quoti...

متن کامل

Rigidity for Families of Polarized Calabi-yau Varieties

In this paper, we study the analogue of the Shafarevich conjecture for polarized Calabi-Yau varieties. We use variations of Hodge structures and Higgs bundles to establish a criterion for the rigidity of families. We then apply the criterion to obtain that some important and typical families of Calabi-Yau varieties are rigid, for examples., Lefschetz pencils of Calabi-Yau varieties, strongly de...

متن کامل

Algebraic topology of Calabi–Yau threefolds in toric varieties

One of the most fruitful sources of Calabi–Yau threefolds is hypersurfaces, or more generally complete intersections, in toric varieties. This is especially true since there is a proposal for the mirror of any such Calabi–Yau threefold. Usually the toric varieties associated to convex lattice polytopes are singular, causing the Calabi–Yau threefolds in them also to be singular, so that to get s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017